Telegram Group & Telegram Channel
Что вы можете сказать про вычислительную устойчивость сигмоиды? Могут ли возникать какие-нибудь проблемы?

Формула сигмоиды выглядит так, как на картинке. При очень больших отрицательных или положительных значениях x у функции действительно могут возникнуть проблемы.

В общем, в такой ситуации производная сигмоидной функции будет стремиться к нулю. Это означает, что изменения весов будут незначительными в процессе обратного распространения ошибки, что может существенно замедлить обучение или даже остановить его.

Если же мы имеем дело с очень большими значениями x, то у нас и вовсе может возникнуть переполнение памяти (overflow). Так, в Python мы можем получить предупреждение о переполнении (RuntimeWarning: overflow encountered in exp). Это указывает на то, что результат вычисления экспоненциальной функции слишком велик для представления в типе данных с плавающей запятой.

#машинное_обучение



tg-me.com/ds_interview_lib/306
Create:
Last Update:

Что вы можете сказать про вычислительную устойчивость сигмоиды? Могут ли возникать какие-нибудь проблемы?

Формула сигмоиды выглядит так, как на картинке. При очень больших отрицательных или положительных значениях x у функции действительно могут возникнуть проблемы.

В общем, в такой ситуации производная сигмоидной функции будет стремиться к нулю. Это означает, что изменения весов будут незначительными в процессе обратного распространения ошибки, что может существенно замедлить обучение или даже остановить его.

Если же мы имеем дело с очень большими значениями x, то у нас и вовсе может возникнуть переполнение памяти (overflow). Так, в Python мы можем получить предупреждение о переполнении (RuntimeWarning: overflow encountered in exp). Это указывает на то, что результат вычисления экспоненциальной функции слишком велик для представления в типе данных с плавающей запятой.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/306

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA